
Consider the AR1 model
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where the 
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. This specification assumes individual specific means with 
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. We know from Nickell (1981) that OLS estimates of (1.1) are biased for fixed T as N goes to infinity. The bias is given by,
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where 
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. However, the bias disappears for (=1. The unit root hypothesis can be tested using the t-statistic for H0: (=1. The t-statistic is distributed asymptotically normal under the null hypothesis of a unit root.

A modified Dickey-Fuller test statistic (Breitung and Meyer, 1994).

Under the alternative hypothesis 
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 leading to a loss of power. For a more powerful test, subtract the first observation 
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from both sides of equation (1.1):
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The OLS estimate of this equation is biased, but the bias disappears under the null hypothesis of a unit root. The advantage of this test equation is that the bias does not depend on the individual fixed effects. This test is generally superior to (1.1).

Hitgher order autocorrelation.

We can generalize the test equation to an AR(p) model. Subtract 
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 from both sides and subtract the initial observation from the lagged level to yield the test equation. The linear time trend can be included if the data is trending.
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The unit root test consists of testing the null hypothesis 
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 in (1.4) which is the panel data equivalent of an augmented Dickey-Fuller test. The t-ratio is distributed normally under the null hypothesis of a unit root. Note that these estimates are done using OLS ignoring the fixed effects.

We can again correct for fixed effects by subtracting the initial observation, 
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from the lagged level.
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Again, the appropriate test is the t-test on the null hypothesis, 
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.There are a two small problems with the Breitung and Meyer approach. It assumes that the pattern of serial correlation is identical across individuals, and therefore does not extend to heterogeneous residual distributions. Also, the Breitung and Meyer method is best for panels with a large cross-section and a relatively small time series dimension (T<25). 

Wu (1996) suggests the following approach for panels with more than 25 time series observations on each individual. First, subtract off the individual means (demean) and the time means.
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Then regress the demeaned series against itself, lagged, with no intercept.
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The t-statistic for the null hypothesis of a unit root is defined as follows.
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To create the test equation, we subtract 
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from both sides of the equation and add lagged differences to correct for possible serial correlation.
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where 
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, so test the null hypothesis that the coefficient on the lagged level is equal to zero. The empirical distributions are found by Monte Carlo simulations calibrated to the sample. For a panel of N individuals and T time series observations, generate N independent random walks with T observations each. The resulting series are demeaned as in (1.5) above. The test statistic is found by estimating (1.6) with the transformed data. Repeating this process 10,000 times generates the 5% significance levels. Use the usual standard errors and t-ratios.

The Wu technique is derived from Levin and Lin (1992) According to Levin and Lin, if the error terms in a panel are independent and identically distributed (i.i.d.) and there are no fixed effects, then the panel regression unit root t-statistic converges to  the standard normal distribution. However, if individual fixed effects are present, or there is serial correlation in the residuals, the test statistic converges to a non-central normal distribution that requires either a correction to the t-statistic or revised tables of critical values.

The appropriate tables of critical values for data with fixed effects are given in Levin and Lin (1992) and reproduced as Table 5 below (p.8).

One of the important results of the panel data analysis of unit root tests is the discovery that the addition of a few individuals to a panel dramatically increases the power of the unit root tests over such tests applied to single time series. The increase in power comes from the additional variance  (information) provided by independent cross-section observations. 

The major problem with both the Breitung-Meyer and Levin-Lin approach is the assumed alternative hypothesis. The null hypothesis, which we can all agree on, is that 
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 Under the alternative hypothesis, 
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. While it is perfectly sensible to reject the null that all the individuals have unit roots, it is unreasonable to assume that they all have the same degree of stationarity. If we are talking about purchasing power parity, it is sensible to test the null hypothesis that none of the countries converge to parity (i.e., they all have unit roots). It is less reasonable to assume that they all converge to parity at the same rate. 

Im, Pesaran, and Shin (IPS) relax the alternative that 
[image: image25.wmf]12

...

N

rrr

===

. They estimate the following ADF test equation for each individual.
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The test for a unit root consists of testing the coefficient on the lagged level with a t-test. To test the null of a unit root across all individuals, merely take the average of the t-ratios ("t-bar test").
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where 
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is the t-ratio for the individual i using all T time series observations. IPS also propose an "LM-bar" test where they compute an average Lagrange multiplier test of the null hypothesis that the lagged level has no explanatory power (its coefficient is zero so that 
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, for all i) across all individuals. The Monte Carlo results indicate that the t-bar test is somewhat more powerful.

When the errors are serially uncorrelated and independently and normally distributed across individuals, the resulting "LM-bar"  and "t-bar" test statistics are distributed as standard normal for large N (number of individuals) and finite T (number of time periods). When the errors are serially correlated and heterogeneous across individuals, the test statistics are valid as T and N go to infinity, as long as N/T goes to k where k is some finite positive constant. The tests are consistent under the alternative hypothesis that the fraction of the individual processes that are stationary is non-zero. Monte Carlo results show that these tests outperform the Levin and Lin test in finite samples. 

If there are unobserved time-specific common components (significant year dummies), the disturbances are correlated across individuals. The t-bar test requires that the errors be independent and therefore breaks down. To remove the common time series component, demean the data by subtracting the cross section mean, 
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from the original series before applying the ADF test for each individual. Note that there will be one cross section mean for each year, t. Thus, the test equation is 
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where 
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. The only remaining difficulty is that the data are trending according to a deterministic time trend and the coefficient on the trend is different across individuals. This, according to IPS, requires further research.

Nevertheless, again, note how useful it is to have several cross section observations of a set of time series. Even if the panels are heterogeneous, we can use the independence of the cross sections to generate independent t-tests, which are then averaged. The averaging generates a substantial increase in power over the usual single time series unit root test.

So, the bottom line is that the IPS approach is superior to the others. Tables of critical values for the t-bar test are reproduced below. A sample SAS program is available to be downloaded from  http://faculty.wm.edu/cemood/panelur.sas.
One might wonder what is gained from the knowledge that your panel data contain unit roots. What is an econometrician to do if the data have unit roots. What does one do if the panels are stationary? It turns out that it doesn't really matter very much.

PANEL REGRESSION MODELS WITH NONSTATIONARY DATA.

The obvious question is, “So what if the data show unit roots?” Clearly, if the data are stationary, then the usual Gauss-Markov assumptions hold and there is nothing new. If the unit root tests do not reject the null hypothesis of a unit root, what do we do? It turns out that the usual pooled time series and cross section regression models yield useful information concerning the long run regression relationship (Phillips and Moon, 1999). 

Suppose we have two I(1) vectors, Yit and Xit. When there is no cointegrating vector linking the two vectors, a time series regression of Yit on Xit for any i, is spurious. Now suppose we have panel data with a large number of individuals. In this case, even if the noise in the time series regression is strong, the noise is usually independent across individuals. So, by pooling, we can reduce the effect of the residuals (noise) and keep the signal. The result is a consistent estimate of a long-run regression coefficient. The estimated coefficient is an estimate of the long run average relationship over the cross sections. Cross sections are typically thought to reflect the long run relationship.

Note that Pesaran and Smith (1995) have shown that the long run relation can be consistently estimated from a set of randomly different cointegrating coefficients. They recommend using a cross-section regression on time-averaged data. However, compared to the pooled panel estimator, this limiting cross section estimator is inefficient.

The bottom line (Phillips and Moon, 1999, p. 1058) is that there are four possible panel structures for nonstationary data: (1) no cointegrating relation, (2) heterogeneous cointegrating vectors, (3) a homogeneous cointegrating vector, (4) near-homogeneous relations. In all four cases, the pooled panel estimator yields consistent estimates with a normal limit distribution. This means that it doesn’t matter whether the panel data have unit roots. In any case we are estimating a meaningful regression with the usual standard errors and t-ratios.

Note that while the regression is a meaningful long run relationship, if there is a possibility of reverse causation (simultaneity), the long run regression cannot distinguish causal direction. Also, when estimating long run average relationships, do not include lagged dependent variables on the right hand side. To do so, would imply a short run relationship.

These results hold in the presence of individual fixed (or random) effects (Phillips and Moon, 1999, pp. 1088-1091). The only difference is that you use demeaned data. If the independent variables also have individual deterministic trends as well as stochastic trends, then use detrended data rather than demeaned data.

Statistical tests are done using asymptotic distributions. For example, suppose we want to test the hypothesis that the coefficients for OECD countries (=a) are different from developing countries (=b). That is, test H0 βa = βb in the model
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. Use the Wald test (asymptotic F-test) against a chi-square distribution. {Use the Test statement in either SAS or Stata.}

In summary, suppose we have a panel data set with relatively large N and T. There exists interesting long run relationships between two integrated panel vectors even where there is no individual time series cointegration or where the cointegration is heterogeneous (likely). These interesting relations are long run average cross-section relationships (i.e., averaged over the time periods). This makes sense in that the cross section is usually assumed to reflect the long run equilibrium relationship. They are analogous to the population (not sample) regression coefficients in conventional cross section regressions. 

These results require cross section independence. Some weak results can be derived in the presence of dependence, but it is a function of the particular case at hand. If the individuals cannot be assumed to be independent, then the procedure falls apart. 

So, if there is no simultaneity and we are primarily interested in the long run relationship, it doesn't matter much whether the data have unit roots or not. If they do then the usual fixed effects model is the long run average relationship. If they are stationary, then the pooled model (in levels) is again the long run relationship. 
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Critical Values for Levin-Lin Unit Root Test
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t=5 t=10
N 10% _25% 5% 10% 50% 10% 2.5% 5% _10% 50%
1 216 -211 -206 -197 -150 268 -254 -241 -225 -155
2 -2.87 -277 -269 -257 -202 333 -318 -3.02 -282 -205
5 410 -396 -384 -369 -308 451 431 -413 -390 -3.07
10 -540 -524 510 -494 -430 577 -554 -535 511 425
15 -637 -621 -6.06 -589 -524 672 -648 -628 -604 -5.16
20 =719 702 -687 -669 -604 -751 -727 -7.06 -6.82 -594
25 <790 -773 -758 -740 -674 -821 -796 -7.76 -151 -6.63
5 -1068 -1051 -10.35 -10.17 -951 -1093 -10.69 -1047 -10.23 -9.33
75 -12.82 -12.64 -1248 -1230 -1164 -13.02 -1277 -1256 -12.31 -11.42
100 -14.61 -1443 -14.27 -14.09 -1344 -14.78 -14.53 -14.32 -14.07 -13.17
150 -17.68 -1745 -17.29 -17.11 -1645 -17.73 -1749 -1727 -17.02 -16.12
200 -20.18 -19.99 -19.83 -19.65 -18.99 -2022 -19.98 -19.76 -19.51 -18.61
250 -2243 -22.24 -22.08 -21.89 -2122 -2242 -2217 -2195 -21.70 -20.80
300 -24.47 -2428 -2411 -23.92 -2325 -2441 -2416 -2394 -23.69 -22.79

t=26 t=50
N 10% _25% 5% 10% 50% 0% _25% 5% 10% 50%
& -8.11 -287 -267 -243 -156 -324 299 -276 -249 -156
2 -369 -344 -322 -296 -201 378 -351 -327 -3.00 -2.02
5 476 -449 426 -3.98 -299 480 453 428 400 -296
10 -594 566 _ -542 -514 -412 596 -567 -543 -513 -4.06
15 -684 -656 -632 -603 -500 684 -656 -631 -600 -4.93
20 160 -732 -7.07 -678 -575 759 -730 -7.05 -6.74 -5.66
25 -827  -798 774 -745 -641 825 796 -1.71 733 -631
5 -10.89 -10.60 -10.35 -10.06 -9.02 -10.83 -10.54 -1028 -9.96 -8.87
75 -1291 -1262 -12.36 -12.07 -11.02 -12.81 -1252 -12.26 -11.94 -10.85
100 -14.61 -14.32 -14.06 -13.77 -12.71 -1448 -1419 -1392 -1361 -12.52
150 -17.46 -17.17 -1691 -16.61 -1556 -17.28 -16.98 -16.72 -1641 -15.32
200 -19.86 -19.57 -19.31 -19.01 -17.96 -19.64 -19.34 -19.07 -18.77 -17.68
250 -21.98 -21.69 -2143 -21.13 -20.08 -2172 -2141 -21.15 -20.84 -19.76
300 -23.89 -23.61 -23.35 -23.04 -22.00 © -2359 -23.29 -23.03 -22.72 -21.64

t=100 t=250
N 10% 25% 5% 10% 50% 10% 25% 5% 10% 50%
1 -330 -304 -280 -252 -156 -340 -310 -2.84 -254 -1.57
2 . -38 -355 -331 -302 -199 -38 -359 -333 -303 -2.00
5 485 -456 430 -401 -292 48 - 458 -431 401 -292
10 -6.00 -569 -543 -513 -403 -601 570 -543 512 401
15 -688 -657 -630 -6.00 -488 -688 -656 -629 -598 -4.86
2 <762 -7130 -704 -673 -561 761 -729 -7.02 -671 -558
25 -827 795 -769 -7.38 -626 -825 -793 -766 -1.35 -6.22
5 -10.83 -10.51 -1024 -9.92 -880 -10.78 -1046 -10.19 -9.87 -8.74
7 -1279 <1246 -12.20 -11.88 -10.76 -1271 -1240 -12.13 -11.82 -10.68
100 -14.44 -14.12 -13.85 -1353 -1241 -14.35 -14.04 -13.77 -1345 -12.33
150 -17.21 -1689 -1662 -16.30 -15.19 <1710 -1679 -1652 -16.21 -15.08
200 -19.55 -19.22 -18.95 -1864 -17.52 -1941 -1911 -1884 -1853 -1741
250 -21.61 -21.28 -21.01 -20.70 -19.58 2146 -21.16 -20.88 -20.58 -19.46
300 -2347 -23.14 -22.86 -22.56 -2145 2331 -23.01 -22.73 -2243 -21.31




Critical Values for Im, Pesaran, and Shin t-bar Unit Root Test
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Exact Sample Critical Values of 7, Statistic”

zT s 10 15 20 25 30 a0 50 60 70 100

Pancl A: DF regressions containing only an intercept

5 379 266 254 250 246 242 240 240
7 345 247 238 233 228 228 227
10 306 232 224 1 216 216 215
15 279 214 200 -208 204 204 204
20 261 206 202 -200 S198  -197  -197
25 251 201 -197  -195 -193 4193 -192
50 220 <185 -183  -182 SL81 <181 .18l
100 200 -L75 <174 -LT3 73 A3 AW
5 276 228 221 219 218 216 215 218
7 257 217 211 209 208 206 206 205
10 242 206 202 <199 -199 [197 198 -197
15 228 <195 -192 <191 -190 189 <189 -1.89
20 218 -189  -1§7 186 185 S84 184 -184
25 211 -185  -183  -182 182 -181 181 -181
s0 [195  -L75 -L74 -3 -3 73 73 AT
100 <184 -L68  -L67  -l6T <167 SL67 -L6T  -L67
5 238 210 206 204 204 202 2020 20
7 227 201 <198 <196 -1.95 -194 195 -194
10 217 4193 <190 189 -188 -187 <188 -188
15 206 -185  -183 182 -l -L81 181 o181
20 200 -180  -L79 <178 -L78 78 A1 A7
25 S96 -L77 -L76 -LT7S B R v )
50 -185  -L70 169 -169 -168 168 -169
100 SL77 <164 -l64 164 Sl64 164 -l64

Panel B: DF regressions containing an intercept and a linear time trend

5 .12 320 303 30 300 299
7 136 303 297 294 287 286
10 644 288 284 28 275 275
15 572 274 271 269 265 264
2 554 267 3 262 258 258
25 516 261 258 258 254 254
50 450 248 246 244 243
100 -4.00 239 238 236 236
H 4.6 287 282 275 275
7 438 276 2m 266 266
10 411 266 263 258 258
15 388 257 255 251 251
20 373 252 249 246 <246
25 -3.62 248 246 244 24
50 335 238 238 236 236
100 313 232 23 231 231
5 277 270 267 26 262
7 268 262 259 255 255
10 259 254 252 249 249
15 252 247 246 244 244
20 247 244 242 240 240
25 244 240 239 238 238
50 236 23 233 232 23
100 230 229 228 228 228

* The critical values reported in this table are computed via numerical integration with 50,000 replications. The t-bar (7,,,) sttistic, defined by
(5.1),i8 the sample average of the t-statistics obtained from DF regressions of individual groups. The underlying DGP is y, =¥, + €, & ~
N, 212,00, T =1,2,0N, With yo = 0,






Critical Values for Im, Pesaran, and Shin LM-bar Unit Root Test
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Exact Sample Critical Values of LM ., Statistic’

zT s 10 15 20 25 30 40 50 60 70 100

Panel A: DF regressions containing only an intercept

1 Percent
s 339 434 456 517 534 545 5.66 582 591 592 605
7 318 4.04 447 4.70 4.90 5.03 520 532 536 5.46 5.49
10 298 377 415 437 452 463 476 4.88 492 5.00 507
15 2381 349 385 4.03 419 426 438 4.49 454 4.56 4.63
20 270 3.35 368 385 396 4.06 an 425 430 433 440
25 263 325 354 3 384 392 4.03 410 414 4.9 423
50 246 298 325 341 350 3.58 3.66 an 377 379 384
100 233 2381 3.05 318 328 334 341 347 351 353 359

5 Percent
s 301 376 411 434 4.49 4.56 am 479 4.88 4.92 499
7 284 353 3.87 4.06 419 430 443 451 455 4.59 465
10 271 334 3.65 383 3.96 4.04 415 422 427 431 437
15 258 3.16 345 363 mn 380 390 396 4,02 4.04 410
20 251 3.05 334 348 358 3.66 376 383 387 389 3.94
25 246 2.98 324 339 349 357 3.66 37 376 3.79 3.84
50 233 2381 3.05 318 327 334 342 346 350 353 358
100 224 2.69 291 3.03 3 317 325 330 333 335 3.40

10 Percent
s 279 344 374 394 4.06 4.12 424 430 437 441 447
7 266 327 356 373 384 3.92 4.03 4.10 413 4.19 423
10 256 312 340 355 3.66 374 385 3.89 393 397 4.03
15 246 299 324 340 3.49 356 365 370 375 ERL 384
20 240 290 316 330 339 345 358 3.60 3.64 3.66 am
25 236 285 3.09 330 33 339 347 352 3.56 359 363
50 226 272 294 301 318 321 328 333 337 339 344
100 219 262 284 295 303 3.09 316 320 323 325 330

Panel B: DF regressions containing an intercept and a linear time trend

1 Percent
s 420 576 661 71 747 7.68 807 8.30 844 8.59 8.78
7 4.05 546 621 6.68 7.00 725 7.54 773 7.88 7.98 8.15
10 388 520 588 631 6.60 678 707 7.26 737 743 7.63
15 374 4.94 556 594 620 637 665 676 692 7.00 7.14
20 365 478 539 572 597 614 637 653 6.64 671 6.85
25 358 468 526 5.60 584 599 6.19 636 645 653 6.66
50 343 442 4.95 525 546 569 579 592 6.00 6.09 619
100 331 424 4 501 519 533 559 563 570 576 587
5 Percent
5 392 5.19 5.89 628 6.54 675 7.02 7.19 728 7.40 755
7 378 498 561 598 623 642 6.68 6.84 695 7.02 718
10 3.66 478 538 573 5.96 613 637 6.50 661 667 682
15 354 4.61 516 549 571 586 608 621 631 637 6.
20 348 450 5.03 5.34 555 5.69 5.91 603 613 6.19 631
2 342 442 4.94 524 545 5.60 579 592 599 6.06 617
50 331 424 472 501 519 533 551 562 5.70 576 585
100 322 an 456 484 501 514 531 541 548 554 5.64
10 Percent
5 375 489 549 5.85 6.8 625 6.49 663 6.73 6.83 696
7 363 472 529 5.63 585 601 624 638 647 653 6.68
10 3.53 457 5.10 543 563 578 601 612 622 628 641
15 343 443 4.93 526 545 559 578 591 6.00 6.05 6.18
20 338 434 4.84 514 533 546 5.66 5.76 586 592 6.3
25 334 428 477 5.06 526 538 5.57 5.68 5.76 583 592
50 324 4.14 4.60 4.88 5.06 519 535 5.46 553 559 5.69
100 347 404 448 475 491 5.04 520 530 537 542 551

*The critical values reported in this table are computed via numerical integration with 50,000 replications. The LM-bar (L) satisti, defined
by (3.3), is the sample average of the Lagrange multiplier statistics obtained from DF regressions of individual groups. The underlying DGP is
+ 88, ~ N(O1), 112,03 i=1,2,00, With y = 0.
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